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Analysis of the `-replica symmetry breaking solution of the Sherrington-Kirkpatrick model
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In this work we analyze the Parisì -replica symmetry breaking solution of the Sherrington-Kirkpatrick
model without external field using high order perturbative expansions. The predictions are compared with those
obtained from the numerical solution of thè-replica symmetry breaking equations, which are solved using a
pseudospectral code that allows for very accurate results. With these methods we are able to get more insight
into the analytical properties of the solutions. We are also able to determine numerically the end pointxmax of
the plateau ofq(x) and find that lim

T→0
xmax(T).0.5.
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I. INTRODUCTION

Since its proposal in the 1980s the behavior of the Pa
`-replica symmetry breaking (̀-RSB! solution of the
Sherrington-Kirkpatrick~SK! model has been extensively in
vestigated both qualitatively and quantitatively@1,2#. Despite
this enormous amount of work, which has revealed many
the properties of the solutions, complete control of the so
tion is still missing. One of the reasons can be traced bac
the fact that until now only low order expansions have be
used, and moreover applied often to reduced forms of
`-replica symmetry breaking equations valid only near
critical temperature. From the numerical point of view the
are only a few works that confirm the general properties
the solution but do not allow for high accuracy. On the oth
hand,`-replica symmetry breaking solutions of the type e
countered in the SK model have been found in other mod
of interest in different fields, e.g., in computer science w
solvability problems@3# or in the study of the structural glas
transition@4–6#.

Motivated by these problems, we believe that it would
quite useful to have some reliable and efficient tool to fi
good approximations of the full solution far from the critic
points also. In this work we reconsider two approaches.
first one is based on expansions for temperatures nea
critical temperatureTc . As we said above, previous wor
considered only low order expansions@7–9#. Here, by using
algebraic manipulators, we push the expansion to rather
orders and by resumming it via the Pade´ resummation tech-
nique we are able to a get a good estimate of the solution
a wide range of temperature belowTc .

The second approach is numerical. Previous numer
studies of thè -replica symmetry breaking solution used
naive integration scheme based on the direct discretizatio
the Parisi equation@10–13#. The main disadvantages of th
approach are the large amount of memory needed for a g
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resolution of the solution and the numerical problems aris
when q̇(x) is small. To overcome these problems we dev
oped a numerical scheme based on a pseudospectral
rithm which allows for rather accurate results for all tem
peratures with a reasonable amount of memory. Moreo
the use of pseudospectral methods makes the whole
rather fast.

We stress that, while the methods we are going to disc
are applied here to the Sherrington-Kirkpatrick model, th
have a wider range of application. In principle they can
applied to any model with aǹ -replica symmetry breaking
type solution@3#.

We find that for the Sherrington-Kirkpatrick model th
Parisi solutionq(x) is not an odd function as one migh
expect from its physical meaning. At anyT,Tc , the Taylor
expansion ofq(x) in powers ofx contains both odd as wel
as even powers ofx. The only term that is missing isx2. The
presence of the fourth order derivative was first noted
Temesvari@14#. Often, instead ofq(x), it is more useful to
consider the overlap probability distribution functionP(q),
which gives the probability of finding two states with mutu
overlapq according to the Gibbs measure. The two quantit
are related by@15,16#

P~q!5
dx

dq
, ~1!

wherex(q) is the inverse function ofq(x). In the absence of
external magnetic fields the functionP(q) must be an even
function of q. The computed functionq(x), however, is de-
fined only for positive values; therefore it determines on
the right branch of the functionP(q). If we define P̃(q)
5dx/dq for q.0 then the fullP(q) is given by the sym-
metrized expression

P~q!5
1

2
P̃~2q!1

1

2
P̃~q!. ~2!
©2002 The American Physical Society37-1
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A. CRISANTI AND T. RIZZO PHYSICAL REVIEW E65 046137
It is easy to see that the presence of nonzero even deriva
of q(x) at x50 makes the functionP(q) nonanalytical at
q50:

P~q!5c01c2q21c3uqu31•••, ~3!

so thatP(q) has discontinuous derivatives atq50.
We shall discuss two different methods of computing

expansions. The first, discussed in Sec. II, performs exp
sion before imposing stationarity of the free energy fun
tional. The two steps, however, can be inverted, i.e., the
pansion can be done after stationarity is imposed, Sec
The two approaches are obviously equivalent and the ad
tage of using one or the other depends only on which qu
tity one is interested in. Since the expansions are likely to
asymptotic some resummation scheme, such as thé
scheme discussed in Sec. IV, is needed. Finally, in Sec. V
present an integration procedure and compare the analy
results with those obtained from a direct numerical solut
of the `-replica symmetry breaking equations.

II. EXPANSION OF THE FREE ENERGY FUNCTIONAL

The Parisi free energyf for the SK model in an externa
field h at temperatureT is @17#

2 f 5
b

4 S 122 q~1!1E
0

1

dx q2~x! D
1E

2`

1` dy

A2pq~0!
expS 2

~y2h!2

2 q~0! Df~0,y!, ~4!

wheref(0,y) is the solution evaluated atx50 of the Parisi
equation

ḟ~x,y!52
q̇~x!

2
@f9~x,y!1b x f8~x,y!2# ~5!

with the boundary condition

f~1,y!5b21 ln ~2 coshby!, ~6!

where we have used the standard notation and denote de
tives with respect tox by an overdot and derivatives wit
respect toy by a prime. The order parameterq(x) at tem-
peratureT is obtained by the stationarity condition of Eq.~4!
with respect to variations ofq(x), while the value of Eq.~4!
at the stationarity point gives the free energyf (T).

To expand the free energy functional~4! in powers oft
5Tc2T512T we observe that in the absence of exter
fields q(x) is different fromq(1) only in a region@0,xmax#
with xmax5O(t) @7#, so that an expansion in powers oft
must correspond to an expansion of the same order ix.
Therefore, to compute the free energy to ordern, we insert
into Eq. ~4! the following expansions:

q~1!5 (
i 51

n22

ait
i ~7!

and
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x~q!5 (
i 51

n23

(
j 50

n232 i

bi j q
it j . ~8!

The coefficients of the expansion of the functionf(q,y)
aboutq5q(1) andy50 can be obtained by repeated diffe
entiation with respect toq of the equation

]f

]q
52

1

2 F ]2f

]y2
1x~q!S ]f

]y D 2G . ~9!

Differentiating this equationj times with respect toy, mixed
derivativesf (1,j )(q,y) can be eliminated in favor of deriva
tives with respect toy only. In the absence of an extern
magnetic field the last term in Eq.~4! reduces tof(0,0),
greatly simplifying the calculation since at each step we c
eliminate all terms containing odd derivatives off with re-
spect toy, such as, for example, (]f/]y)2 in the previous
equation, since all these vanish if evaluated aty50, f(q,y)
being an even function ofy.

Collecting all terms with the same power oft the free
energy functional~4! is written as

f 5(
i 50

n

ci@$a%,$b%#t i . ~10!

This expression must be stationary with respect to variati
of thea’s andb’s for anyt. Imposing stationarity of eachci
we can find the values of the parametersa and b. For ex-
ample, to ordert6 we have

q~x!5S 1

2
1

3

2
t12t329t41

336

5
t5D x

1S 2
1

8
1

25

8
t13t2138t3D x3

1~2129t230t2!x4

1S 351

320
1

9189

320
t D x52

27

5
x6 ~11!

and

xmax52t24t2112t3269t41
2493

5
t52

20544

5
t6.

~12!

By using this procedure we have obtained the free energy
to order 30,q(x) to order 13, andq(1) to order 14, because
despite the fact that the free energy is evaluated to orden,
the variational relations allow one to determinex(q) only to
order @(n23)/2# andq(1) only to order@(n21)/2#.

From Eq. ~11! we clearly see thatq(x) contains even
powers ofx, with the exclusion ofx2. In the next section we
shall derive exact relations among the derivatives ofq(x) at
x50 from which it follows thatq(2)(x50)50 but q(4)(x
50)Þ0.
7-2
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III. EXPANSION OF THE ORDER PARAMETER q„x…

To evaluate the derivatives of the order parameterq(x) at
x50 we use a variational approach developed by Somm
and Dupont@11#. This method has also the advantage
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leading to exact relations among derivatives of different
der, so it can be used to test the findings of the previ
section in a nonperturbative way. The starting point is
variational form of the Parisi free energyf:
2 f 5
b

4 S 122 q~1!1E
0

1

dx q2~x! D 1E
2`

1` dy

A2pq~0!
expS 2

~y2h!2

2 q~0! Df~0,y!2E
2`

1`

dy P~1,y!@f~1,y!2T ln~2 coshby!#

1E
0

1

dxE
2`

1`

dy P~x,y!F ḟ~x,y!1
q̇~x!

2
@f9~x,y!1b x f8~x,y!2#. ~13!
s

f

the
Imposing stationarity with respect to variations ofP(x,y),
P(1,y), f(x,y), f(0,y), and q(x), one obtains the varia
tional equations

q~x!5E dy P~x,y!m2~x,y!, ~14!

ṁ~x,y!52
q̇~x!

2
@m9~x,y!12bxm~x,y!m8~x,y!#,

~15!

Ṗ~x,y!5
q̇~x!

2
†P9~x,y!22bx@m~x,y!P~x,y!#8‡,

~16!

with initial conditions~in the absence of a magnetic field!

m~1,y!5tanh~y/T!, ~17!

P~0,y!5d~y!. ~18!

These equations are the starting point of both the expan
discussed in this section and the numerical solution.

A time scaletx can be associated with the order parame
q(x) such that for times of ordertx states with an overlap
equal to or greater thanq(x) can be reached by the system
In this pictureP(x,y) andm(x,y) become, respectively, th
probability distribution of frozen local fieldsy and the local
magnetization in a local fieldy at the time scale labeled byx
@1,11#.

The derivatives ofq(x) can be obtained by successivex
derivation of Eq.~14!. The procedure is simplified by the us
of the following identity@9#:

d

dxE dy P~x,y! f ~x,y!5E dy P~x,y!V~x,y! f ~x,y!

~19!

where

V~x,y!5
]

]x
1

q̇

2 S ]2

]y2
12 b x m~x,y!

]

]yD . ~20!
on

r

The application of the operatorV(x,y) generates derivative
of the functionm(x,y) with respect tox and y. Mixed de-
rivatives such asm(1,j )(x,y) can be eliminated in favor o
derivatives ofm(x,y) with respect only toy by deriving Eq.
~15! j times with respect toy.

The first application of this procedure yields

q̇~x!5q̇~x!E dy P~x,y!~m8!2 ~21!

which for q̇(x)Þ0 simply reads

15E dy P~x,y! m8~x,y!2. ~22!

The procedure can be iterated infinitely. For example,
next three applications lead respectively to

052
2x

T E dy P~m8!31E dy P~m9!2, ~23!

2

TE dy P~m8!35q̇E P dyF ~m-!22
12x

T
m8~m9!2

16S x

TD 2

~m8!4G , ~24!

and

E P dyS ~18xq̇16x2q̈!~m8!4

T2

2
~18q̇T112xq̈T2120m8x2q̇2!m8~m9!2

T2

1
230xq̇2~m9!21q̈m-T220xq̇2m8~m-!

T
m-

2
24x3q̇2~m8!5

T3
1q̇2~m-8!2D 50. ~25!
7-3
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A. CRISANTI AND T. RIZZO PHYSICAL REVIEW E65 046137
We are interested in the derivatives ofq(x) at x50, so we
take the limitx→0 of the above equations. The limit can b
done in a trivial way and, since the functionP(0,y) reduces
to a d function @see Eq.~18!#, the equations are greatly sim
plified. Moreover, sincem(x,y) is an odd function ofy for
anyx, clearlym(0,j )(0,0)50 for any evenj. In this limit Eqs.
~22!, ~24!, and~25! reduce, respectively, to

15m8~0,0!, ~26!

2

T
m8~0,0!35q̇~0!m-~0,0!2, ~27!

q̈~0!m-~0,0!250, ~28!

while Eqs.~14! and ~23! become trivial identities.
From Eqs.~26! and ~27! we have

m-~0,0!52A 2

Tq̇~0!
Þ0; ~29!

therefore Eq.~28! implies thatq̈(0)50, as already found in
Ref. @9#.

To obtain information on the fourth derivative ofq(x) the
above procedure must be iterated twice more. Since suc
sive derivatives yield expressions with a rapidly growi
number of terms we only report the result for the limitx
→0:

18q̇~0!

T2
1q(3)~0!m-~0,0!22

38q̇~0!2m-~0,0!2

T

1q̇~0!3m(0,5)~0,0!50, ~30!

q(4)~0!m-~0,0!2
96q̇~0!m-~0,0!3

T
50, ~31!

where Eq.~26! and the exact resultq̈(0)50 have been used
Note that Eq.~31!, with Eq. ~29!, gives a complete determi
nation of the quartic derivative ofq(x) at x50 as a function
of the temperatureT and of the first derivativeq̇(x50):

q(4)~0!52
96A2q̇~0!5/2

T3/2
. ~32!

This relation shows that the functionq(x) does not have a
well defined parity@14#.

Going to higher orders one can show that all the ev
derivatives can be expressed in terms of the odd ones
instance, we have

q(6)~0!52
34272A2q̇~0!7/2

T5/2
2

1056A2q̇~0!3/2q(3)~0!

T3/2
,

~33!

and so on.
04613
es-

n
or

In the limit T→0 we haveTq̇(0)50.74360.002. Note
that if we takeq̇(0);1/T for T→0 the previous equation
implies that all the derivatives diverge with the temperatu
as q(n)(0);1/Tn, in agreement with the Parisi-Toulous
scalingq(x,T)5q(bx) @10,18#. Note that we have derived
this scaling under the strong hypothesis that it must be v
asymptotically forT→0 andbx→0.

This approach also provides an alternative method
compute the expansion ofq(x) in powers ofx andt: starting
from q(x) evaluated at a given order inx and t we can
computem(0,j )(0,0) through Eq.~15! and thenq(x) at the
next order through the set of Eqs.~26!, ~28!, ~30!, ~31!, and
so on. The set of equations can be solved iteratively. By
method we were able to compute the series expansion
q(x) up to order 20, improving the results of the previo
section.

IV. RESUMMATION OF THE EXPANSIONS

Unfortunately all the expansions derived in the previo
sections are likely to be asymptotic and to obtain sens
estimates of the various quantities of interest some form
resummation must be done. Here we shall consider the s
dard Pade´ approximant which for a series of degreeN1M
reads@19#

PM
N ~x!5

(
i 50

N

aix
i

11(
i 51

M

bix
i

, ~34!

where the coefficients are chosen so that the first (N1M
11) terms of the Taylor expansion ofPM

N (x) match the first
(N1M11) terms of the original series. In the following w
shall call this the Pade´ approximant (N,M ).

The first problem we face is that, despite the fact that
series have alternate signs, they are not Stijlties integral
therefore we cannot obtain in a systematic way a sequenc
lower and upper bounds@19#. This difficulty can be over-
come by noticing that most of the quantities we are int
ested in, such as, for example, free energy or entropy
q(1), do have a null derivative atT50. Therefore an indi-
cation of the quality of the approximants can be obtained
analyzing the behavior nearT50. For example, the free en
ergy as a function ofT is reproduced quite well by man
Padéapproximants, even at very low orders; however, so
of these have a positive derivative atT50 while others have
a negative one~see Fig. 1!. By inspecting the figure we can
safely assume that approximants with positive derivati
give an upper bound, and those with negative derivative
lower bound, for the true free energy@20#.

As a general fact we obtain the result that the best P´
approximants at a given order int are those with nearly the
same degree in the numerator and the denominator.
stress, however, that as usual with asymptotic expansion
increase of the order int does not necessarily correspond
an improvement of the precision. With this procedure
obtain for the free energy an estimate with at least 16 di
7-4
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ANALYSIS OF THE `-REPLICA SYMMETRY BREAKING . . . PHYSICAL REVIEW E 65 046137
precision atT50.9 and eight digits atT50.5, and for the
ground state energyE0520.763 2160.000 03, in agreemen
with Parisi’s estimateE0520.763360.0001@17#. A similar
analysis can be used to determine the value ofxmax as a
function of temperature; the result is shown in Fig. 2. T
value of the breaking point is finite in the limitT→0,

xmax~0!50.54860.005 ~35!

~see the inset of Fig. 2!, and slightly larger than the value 1/
predicted by the Parisi-Toulouse scaling, in agreement w
the approximate nature of this relation@10,18#.

The analysis of the functionq(x,T) is more complex,
because not only is the Taylor expansion ofq(x) in powers
of x around any 0,x,xmax likely to be asymptotic for any
fixed temperature, but the expansion int of the coefficients
of the x expansion is itself nonconvergent. Therefore o
should use a double Pade´ expansion, one for the coefficien

FIG. 1. Free energy as a function oft512T for different Pade´
approximants. Top to bottom: (14,16), (13,12), (12,11), (10,1
and (17,10).

FIG. 2. xmax as a function oft512T. Inset:xmax as a function
of t512T with different Pade´ approximants. From top to bottom
(7,10), (9,9), (8,12), (6,7), and (7,8).
04613
th
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and one forq(x). The procedure, however, is quite difficu
because we do not have a systematic way of choosing
best approximant and, moreover, coefficients of higher or
are known with less precision int. A better approach is to
construct the functionq(x) directly point by point by com-
puting q(mxmax) wherem5 i /n ( i 50,1, . . . ,n) for fixed n.
For any m and T the quantityq(mxmax) is itself a power
series int which can be summed up using Pade´ approxi-
mants. With this procedure the functionq(x) can be deter-
mined for differentx resolution just by changing the value o
n, e.g.,n550,100,1000, and using the value ofxmax previ-
ously found~see Fig. 2!. In Fig. 3 the functionq(x) is shown
for various temperaturesT.

This method can be extended to any function ofx or q; for
example, we computed the overlap probability functi
P(mqmax) in a wide range of temperatureT.0.3 ~see Fig.
4!. We found that the best Pade´ approximant is given by
(12,7). By using the relation~1! we can have an independe
estimation ofq(x) with which to test the precision of ou
results. By using a normd`(q,q8)5max0<x<1uq(x)2q8(x)u
and expansions up to order 20 we find, for example, t
d`(q,q8)5O(1025) for T50.6 and d`(q,q8)5O(1024)
for T50.4.

The form of the functionq(x) confirms the prediction of
Ref. @10# obtained from interpolation of the 11-RSB solutio
In particular, it confirms the approximate scalingq(x,T)
;q(x/T) at low temperatures~see Fig. 5!. Note that the
scaling fails whenbx;O(1), in agreement with the findings
of the previous section.

Finally, we mention that an alternative resummation te
nique based on the Borel transform gives results consis
with those obtained with the Pade´ approximants.

V. NUMERICAL INTEGRATION OF THE
`-RSB EQUATIONS

To check the analytical results of the previous sections
have solved thè -RSB equations~14!–~18! numerically on

, FIG. 3. q(x) as a function ofx for various temperatures. From
bottom to top:T50.95 toT50.30 in steps of 0.05.
7-5
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A. CRISANTI AND T. RIZZO PHYSICAL REVIEW E65 046137
a discrete set of points in the infinite strip@0<x<1; 2`
,y,`] and determinedq(x), P(x,y), and m(x,y). The
numerical method is based on the iterative procedure of R
@12#: from an initial guess ofq(x) the fieldsm(x,y) and
P(x,y) and the associatedq(x) are computed in order a
follows.

~i! Computem(x,y) by integrating Eqs.~15! from x5x0
to x50 with initial condition ~17!.

~ii ! ComputeP(x,y) by integrating Eqs.~16! from x50
to x5x0 with initial condition ~18!.

~iii ! Computeq(x) using Eq.~14!.
Here x0<1 ~see later!. The steps 1→2→3 are repeated

until a reasonable convergence is reached, typically a m
square error onq, P, andm of the order ofO(1026).

FIG. 4. P(q) as a function ofq for various temperatures. From
left to right: T50.95 to T50.30 in steps of 0.05. The data we
obtained with a (12,7) approximant. Note thatP(q) attains its mini-
mum value for q.0. This happens for any temperatureT
,0.961 938 . . . .

FIG. 5. q as a function ofbx for different values ofT. Top to
bottom:T50.30, T50.35, T50.40, T50.45, andT50.50.
04613
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The core of the numerical scheme is the integration of
partial differential equations~15! and~16! along thex direc-
tion which, in contrast to previous numerical studies@12,13#,
is done in the Fourier space of they variables, where the
equations take the form

]

]x
m~x,k!5

k2q̇~x!

2
m~x,k!

2
bq̇~x!

2
ikFT @m2#~x,k! ~36!

and

]

]x
P~x,k!52

k2q̇~x!

2
P~x,k!

2bq̇~x!ikFT @P m#~x,k!. ~37!

For each wave vectork these are ordinary differential equa
tions which can be integrated using standard methods
avoid the time consuming calculation of the convolutions
the nonlinear term we use a pseudospectral@21# code on a
grid mesh ofNx3Ny points, which covers thex interval
@0,x0# and they interval @2ymax,ymax#. The truncation of the
wave number may introduce anisotropic effects for largek;
therefore to ensure a better isotropy of the numerical tre
ment we perform dealiasing via anNy/2 truncation@22#. Fi-
nally, the x integration was performed using a third ord
Adam-Bashfort scheme which has the advantage of redu
the number of fast Fourier calls@23#. Typical values used are
Nx5100–5000,Ny5512–4096, andymax512–48. The dif-
ference between the values used forNx andNy follows from
the observation that, if the solution in they direction is
smooth enough, then only a few low wave vectors are
cited. The value of the parameterymax fixes the y range
where the solution is assumed different from zero, since
the numerical algorithm it is implicitly assumed that

P~x,y![m~x,y!50, uyu.ymax. ~38!

This explains the rather large value used. The numbe
iterations necessary to reach a mean square error onq, P, and
m of orderO(1026) depends on the initial guess ofq(x) but
it is typically a few hundred.

In Fig. 6 are shown the order parameterq(x) and the
overlap probability distribution functionP(q) at T50.6
computed for increasingx resolution andx051. As expected
the agreement between the numerical and the perturba
solutions increases with the numberNx of x grid points.
However, the convergence is not uniform: it is rather fast
from xmax and much slower forx.xmax @see the inset of Fig.
6~a!#. This is not unexpected because forx5xmax the deriva-
tive of the order parameterq(1)(x) has a cusp:

lim
x→xmax

2

q(1)~x!.0, lim
x→xmax

1

q(1)~x!50, ~39!

making convergence more difficult. We recall that in der
ing Eqs.~15! and~16! differentiability of q(x) was assumed
7-6
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The use of lower order integration schemes, such as se
order Adam-Bashfort or Euler schemes, does not give m
surable improvements.

Larger values ofNx require more computer memory
therefore to increase the precision we adopted a diffe
approach. Sinceq̇(x)50 for x.xmax Eqs.~15! and ~16! are
trivial in this range and we can reduce the upper bound of
x integration fromx51 to x5x05xmax. This obviously re-
quires a knowledge ofxmax for the given temperature. How
ever, if we assume noa priori knowledge ofxmax we must
proceed with successive approximations: we start fromx0
51 and then reduce it until we ‘‘hit’’ the value ofxmax. This
procedure is simplified by the fact that ifx0,xmax the shape
of q(x) near x0 changes dramatically, with the concavi
passing from negative values forx0.xmax to positive values
for x0,xmax. In Fig. 7 are shownq(x) ~a! and P(q) ~b! at
T50.6 for different values ofx0; the improvement is rathe
evident. As an additional check we have considered
equality

12E
0

1

dx q~x!5T, ~40!

FIG. 6. q(x) as a function ofx ~a! andP(q) as a function ofx
~b! at T50.6 for @~a! bottom to top;~b! left to right# Nx550, Nx

5500, Nx51000, andNx55000. In all casesx051, ymax548, and
Ny54096. The dashed line is the result from the perturbative s
tion discussed in the previous sections. Inset in~a! enlargement of
the region nearxmax.

FIG. 7. ~a! q(x) for T50.6 nearxmax for different x0. ~b! P(q)
for T50.6 for different x0. In all casesNx5500, ymax548, and
Ny54096. The dashed line is the result from the perturbative s
tion discussed in the previous sections.
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which is satisfied by our numerical solution for all studie
temperatures with at least four digits. For example, forT
50.8 we get 0.799 99(4), while for T50.5 the value is
0.499 99(3).

Note that by fine tuningx0 not only can we have a goo
solution forq(x) at the given temperature, but we also ha
the valueof x0. This is best seen by analyzing the concav
of q(x) nearx0. In Fig. 8 we show the second derivative
q(x) nearx0 for T50.4 andNx5500, from which one may
conclude that 0.505,xmax,0.510.

A careful analysis of the stability of this result as a fun
tion of Nx ~see Fig. 9!, reveals, however, that the corre
estimation is 0.510,xmax,0.515, in rather good agreeme
with the analytical resultxmax50.511160.0002. The same
analysis forT50.6 leads to 0.438,xmax,0.440.

We are now in a position to check the results of the p
vious section about the derivative of the order paramete
x50, and in particular the conclusion

-

-

FIG. 8. Second derivative ofq(x) for T50.4 for differentx0

andNx5500, ymax548, andNy54096.

FIG. 9. Second derivative ofq(x) for T50.4 for differentNx

and x050.510, ymax548, andNy54096. Left panel:x050.510;
increasingNx leads to a positive value ofq(2)(x0) implying x0

50.510,xmax. Right panel:x050.515; increasingNx leads to a
more negative value ofq(2)(x0) implying x050.515.xmax.
7-7
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lim
x→0

q(3)~x!.0. ~41!

In Fig. 10 we show the second and third derivatives ofq(x)
obtained from numerical differentiation ofq(x). The agree-
ment with the perturbative result is sufficiently good; mo
over, from the right panel of Fig. 10 we clearly see that
prediction~41! is verified.

We conclude this section with a short discussion of
entropy which, using the stationarity of the free energy fu
tional ~13!, can be written as

s52
b2

4
@12q~1!#2

1E
2`

`

dy P~1,y!@ ln 2 coshby2y tanh~by!#. ~42!

For other equivalent forms see, e.g., Ref.@3#. The entropy as
a function of temperature is shown in the left panel of F
11. The entropy must vanish quadratically with the tempe
ture asT→0 @11#. From our numerical data we find

lim
T→0

s~T!

T2
5a.0.72 ~43!

FIG. 10. Left panel: second derivative ofq(x) at T50.6 and
different Nx . Right panel: third derivative ofq(x) at T50.6 and
different Nx . In both casesx051, ymax548, andNy54096. The
full line is the perturbative result.

FIG. 11. Left panel: entropys as a function of temperatureT.
Right panel:q(1) as a function of temperatureT.
04613
-
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to be compared with 0.71860.004 of the analytic expan
sions.

In the limit T→0 the quantity 12q(1) must also vanish
asT2 @11#. The behavior ofq(1) as a function ofT is shown
in the right panel of Fig. 11. Using these data we obtain

lim
T→0

12q~1!

T2
.1.60, ~44!

in very good agreement with the value 1.6060.01 obtained
with the expansions of the previous sections.

VI. CONCLUSIONS

In this paper we have studied the properties of
`-replica symmetry breaking solution of the Sherringto
Kirkpatrick model without external fields. Using high orde
expansions int5Tc2T we are able to compute the orde
parameterq(x) and other relevant quantities for a large ran
of temperatures with high precision. In particular, we fou
that q(x) is not an odd function ofx, confirming the predic-
tion of Ref. @14#. A direct consequence of this is that th
overlap probability distribution functionP(q) has discon-
tinuous derivatives atq50. Another consequence of ou
findings is that the Parisi-Toulouse scaling becomes ex
asymptotically forT→0 and bx→0, while for T→0 it is a
fairly good approximation. This is also consistent with t
T50 limit of the breaking point which we found to b
xmax(0)50.54860.005.

Having reached very high orders we can reasona
speculate on the analytical properties of the functionq(x). In
particular, we believe that all the expansions in powers ot
are asymptotic expansions; and at any temperature, the f
tion q(x) is infinitely differentiable but not analytical for an
x; in particular, the Taylor expansion of the functionq(x)
around any 0,x,xmax does not converge but is asymptoti

This singular behavior is not connected either with t
replica limit or with the Parisi ansatz; it actually originate
from the singularities in the complex plain of the initial co
dition of the Parisi equation:f (1,y)5 ln 2 coshby. This is
clearly seen for the replica symmetric solution

q5E
2`

1` dz

A2p
e22z2/2 tanh2~bAqz!.

In this case it is easy to prove that the expansion of
2T2) in powers ofp5b2q is asymptotic because it corre
sponds to substituting tanh2 z in the integrand with its Taylor
expansion, which is not convergent on the whole real ax
Then one can prove that the expansion ofq in powers oft
512T is asymptotic, recalling that standard manipulati
~e.g., multiplication, division, inversion, etc.! on an
asymptotic expansion in a power series does not chang
character. A detailed treatment of the RSB solution is mu
more complex, but the origin of the asymptotic characte
likely to be the same. Indeed, an expansion in smallt ~and
therefore in smallq) corresponds to an expansion in smaly
of all the quantities likef (x,y) andm(x,y); the appearance
7-8
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of integrals of the form *P f dy where P(x,y)
; exp(2y2/x) generates asymptotic expansions since
Taylor expansions off (x,y) andm(x,y) in powers ofy do
not converge on the whole real axes. These arguments ca
very useful in practice to guess the position of the singul
ties of the Borel transform if one wants to sum the exp
sions through a conformal mapping@24#. For instance, in the
expression of the free energy integrals of the following fo
appear:

E
2`

1` dz

A2pt
e2z2/2t ln cosh~z!. ~45!

The singularities of the Borel transform of the previous in
gral are located on a cut running from2` to 2p2/8 and a
possible guess is that this is also the singularity structur
the Borel transform of the free energy. This guess is s
04613
e

be
i-
-

-

of
-

ported by analysis of the series expansions.
The analytical results have been compared with numer

solutions of thè -replica symmetry breaking equations. W
have developed a numerical approach based on a p
dospectral code which leads to strong enhancement of
quality of the numerical results. We have also shown ho
for example, to determine the value ofxmax numerically. In
all cases the agreement between the numerical and the
lytical results is rather good.

We conclude by stressing that our results go beyond
interest in the Sherrington-Kirkpatrick model, since t
method we used here is far more general and can be
ployed in a wider class of models with generalized`-replica
symmetry breaking equations, such as those introduce
Ref. @3#. In particular, in this reference the numerical meth
was applied to an optimization problem~3-SAT! model, and
the extension to other relevant models is under developm
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-

ot
iven
rol
@1# M. Mezard, G. Parisi, and M. Virasoro,Spin Glass Theory and
Beyond~World Scientific, Singapore, 1987!.

@2# K.H. Fischer and J.A. Hertz,Spin-Glasses~Cambridge Univer-
sity Press, Cambridge, England, 1991!.

@3# A. Crisanti, L. Leuzzi, and G. Parisi, J. Phys. A35, 481~2002!.
@4# E. Gardner, Nucl. Phys. B257, 747 ~1985!.
@5# T.R. Kirkpatrick and D. Thirumalai, Phys. Rev. B36, 5388

~1987!.
@6# M. Sellitto, M. Nicodemi, and J.J. Arenzon, J. Phys. I7, 945

~1997!.
@7# G. Parisi, Phys. Rev. Lett.43, 1754~1979!; J. Phys. A13, L115

~1980!.
@8# I. Kondor, J. Phys. A16, L127 ~1983!.
@9# H.-J. Sommers, J. Phys.~France! Lett. 46, L-779 ~1985!.

@10# J. Vannimenus, G. Toulouse, and G. Parisi, J. Phys.~France!
42, 565 ~1981!.

@11# H.J. Sommers and W. Dupont, J. Phys. C17, 5785~1984!.
@12# K. Nemoto, J. Phys. C20, 1325~1987!.
@13# P. Biscari, J. Phys. A23, 3861~1990!.
@14# T. Temesvari, J. Phys. A22, L1025 ~1989!.
@15# C. De Dominicis and A.P. Young, J. Phys. A16, 2063~1983!.
@16# G. Parisi, Phys. Rev. Lett.50, 1946~1983!.
@17# G. Parisi, J. Phys. A13, L115 ~1980!.
@18# G. Parisi and G. Toulouse, J. Phys.~France! Lett. 41, L-361

~1980!.
@19# C.M. Bender and S.A. Orszag,Advanced Mathematical Meth

ods for Scientists and Engineers~McGraw-Hill, New York,
1978!.

@20# We note that it is possible to impose a null derivative atT
50 directly in the Pade´ approximants. This, however, does n
produce a measurable improvement of the precision at a g
order, making it at the same time more difficult to have cont
of the convergence.

@21# S.A. Orszag,Studies in Applied Mathematics~Cambridge Uni-
versity Press, Cambridge, England, 1971!, Vol. 4, p. 293.

@22# G.S. Patterson and S.A. Orszag, Phys. Fluids14, 2538~1971!.
@23# See, e.g., J.H. Ferziger and M. Peric´, Computational Methods

for Fluid Dynamics~Springer-Verlag, Berlin, 1996!.
@24# G. Parisi, Statistical Field Theory~Addison-Wesley, New

York, 1988!.
7-9


