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In this work we analyze the Parisi-replica symmetry breaking solution of the Sherrington-Kirkpatrick
model without external field using high order perturbative expansions. The predictions are compared with those
obtained from the numerical solution of tkrereplica symmetry breaking equations, which are solved using a
pseudospectral code that allows for very accurate results. With these methods we are able to get more insight
into the analytical properties of the solutions. We are also able to determine numerically the end,poaft
the plateau ofj(x) and find that Iirqﬂoxma,g('l')>0.5.
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I. INTRODUCTION resolution of the solution and the numerical problems arising

whenq(x) is small. To overcome these problems we devel-

Since its proposal in the 1980s the behavior of the Parisbped a numerical scheme based on a pseudospectral algo-
o-replica symmetry breaking «(-RSB) solution of the rithm which allows for rather accurate results for all tem-
Sherrington-KirkpatricK SK) model has been extensively in- peratures with a reasonable amount of memory. Moreover,
vestigated both qualitatively and quantitatively2]. Despite  the use of pseudospectral methods makes the whole code
this enormous amount of work, which has revealed many ofather fast.
the properties of the solutions, complete control of the solu- We stress that, while the methods we are going to discuss
tion is still missing. One of the reasons can be traced back tare applied here to the Sherrington-Kirkpatrick model, they
the fact that until now only low order expansions have beerhave a wider range of application. In principle they can be
used, and moreover applied often to reduced forms of th@Pplied to any model with ar-replica symmetry breaking
-replica symmetry breaking equations valid only near theYPe solution[3]. _ _ _
critical temperature. From the numerical point of view there_ e find that for the Sherrington-Kirkpatrick model the
are only a few works that confirm the general properties of @11 solutionq(x) is not an odd function as one might
the solution but do not allow for high accuracy. On the other®XPect from Its ph_yS|caI meaning. At ‘?'TKTC’ the Taylor
hand,ec-replica symmetry breaking solutions of the type en-&Xpansion ofy(x) in powers ofx contains both odd as well

countered in the SK model have been found in other model&> even powers of. The only term Fhat_ IS mISsing i€, The
of interest in different fields, e.g., in computer science withPresence of the fourth order derivative was first noted by

- . Temesvari 14]. Often, instead ofj(x), it is more useful to
;gx;glgmi)iogem@] orin the study of the structural glass consider the overlap probability distribution functi®{q),

. . . which gives the probability of finding two states with mutual

.MOt'VatEd by these F’“’b'ems' we be"e"‘? Fhat It WOUld.beoverlapq according to the Gibbs measure. The two quantities

quite useful to have some reliable and efficient tool to f|ndare related by15,16

good approximations of the full solution far from the critical '

points also. In this work we reconsider two approaches. The

first one is based on expansions for temperatures near the

critical temperaturel,. As we said above, previous work P(q)= d_q @

considered only low order expansiofs-9]. Here, by using

algebraic manipulators, we push the expansion to rather high

orders and by resumming it via the Pagsummation tech- wherex(q) is the inverse function af(x). In the absence of

nique we are able to a get a good estimate of the solution fagxternal magnetic fields the functid®(q) must be an even

a wide range of temperature beldvy. function of g. The computed function(x), however, is de-
The second approach is numerical. Previous numericdined only for positive values; therefore it determines only

studies of thex-replica symmetry breaking solution used athe right branch of the functio(q). If we define P(q)

naive integration scheme based on the direct discretization et dx/dq for q>0 then the fullP(q) is given by the sym-

the Parisi equatiop10—13. The main disadvantages of this metrized expression

approach are the large amount of memory needed for a good

1. 1.
P(g)=zP(—q)+ zP(q). 2
*Electronic address: andrea.crisanti@phys.uniromal.it () 2 (—a) 2 (a) )
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It is easy to see that the presence of nonzero even derivatives n-3n-3-i o
of g(x) at x=0 makes the functior?(q) nonanalytical at x(@=2, 2> b;q7. (8)
qZO: i=1 j=0
P(q)=co+Cq2+cslql3+ - - -, (3  The coefficients of the expansion of the functigi{q,y)
aboutg=q(1) andy=0 can be obtained by repeated differ-
so thatP(q) has discontinuous derivatives gt 0. entiation with respect tg of the equation
We shall discuss two different methods of computing the
expansions. The first, discussed in Sec. Il, performs expan- i 1] 924 I\ 2
sion before imposing stationarity of the free energy func- —=—= —+x(q)(—) 1 9
tional. The two steps, however, can be inverted, i.e., the ex- 9 2| ay? ay

pansion can be done after stationarity is imposed, Sec. Il.

The two approaches are obviously equivalent and the advaiifferentiating this equatiof times with respect ty, mixed
tage of using one or the other depends only on which quarderivatives¢*/)(g,y) can be eliminated in favor of deriva-
tity one is interested in. Since the expansions are likely to b&ves with respect to/ only. In the absence of an external
asymptotic some resummation scheme, such as thé Patagnetic field the last term in Ed4) reduces to¢(0,0),
scheme discussed in Sec. IV, is needed. Finally, in Sec. V wereatly simplifying the calculation since at each step we can
present an integration procedure and compare the analyticaliminate all terms containing odd derivatives pfwith re-
results with those obtained from a direct numerical solutiorspect toy, such as, for exampled/dy)? in the previous

of the «-replica symmetry breaking equations. equation, since all these vanish if evaluatega0, ¢(q,y)
being an even function of.
II. EXPANSION OF THE FREE ENERGY EUNCTIONAL Collecting all terms with the same power ofthe free

o _ energy functional4) is written as
The Parisi free energf/for the SK model in an external

field h at temperaturd is [17] n
5 ) f=2, cl{a}{b}l7. (10
—f= Z( 1-2q(1)+ JO dx q2(x))
This expression must be stationary with respect to variations
+e dy (y—h)? of the a's_andb’s for any 7. Imposing stationarity of eaat)
+ f,w mex% " 2400) >¢(0,Y), (4) gﬁ]pﬁg?tgn(;jr(jtz%vvigﬁzvﬁ the parameterand b. For ex-

where ¢(0,y) is the solution evaluated at=0 of the Parisi

. 1 3 336
equation ==+ — S_9t+ — 10
| q(x) 2+27'+27' 97"+ 5 T)X
B(x y>=—LX)[¢"<x Y+BxP (xy)? (5 125
: 2 ’ ' +|—g+ g rr3rsss” )

with the boundary condition +(—1—97—3072)x*

#(1y)=pB""tIn(2 coshgy), (6) 351 9189 27

. . +(—+ r)x5— —x& (1)

where we have used the standard notation and denote deriva- 320 320 5

tives with respect tox by an overdot and derivatives with
respect toy by a prime. The order parametg(x) at tem- and
peratureT is obtained by the stationarity condition of Hd)
with respect to variations af(x), while the value of Eq(4)
at the stationarity point gives the free enefffyr). Xmay= 27— 47+ 1277~ 697+ 5 75 T

To expand the free energy functiond) in powers ofr (12
=T.,—T=1-T we observe that in the absence of external
fields q(x) is different fromq(1) only in a region 0Xal By using this procedure we have obtained the free energy up
with X.=0(7) [7], so that an expansion in powers of to order 30,q(x) to order 13, andj(1) to order 14, because,
must correspond to an expansion of the same ordet. in despite the fact that the free energy is evaluated to ander
Therefore, to compute the free energy to ordewe insert  the variational relations allow one to determix(@) only to
into Eg. (4) the following expansions: order[(n—3)/2] andq(1) only to orderf (n—1)/2].
From Eq. (11 we clearly see thatj(x) contains even

2493 (20544

< i powers ofx, with the exclusion ok?. In the next section we
q(1)= 2’1 ar (@) shall derive exact relations among the derivatives(©f) at
x=0 from which it follows thatq®(x=0)=0 but q*)(x
and =0)#0.
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lll. EXPANSION OF THE ORDER PARAMETER  q(X) leading to exact relations among derivatives of different or-
der, so it can be used to test the findings of the previous
section in a nonperturbative way. The starting point is the
\Jariational form of the Parisi free energy

To evaluate the derivatives of the order paramgfer at
x=0 we use a variational approach developed by Sommers
and Dupont[11]. This method has also the advantage of

j o 217 q(O '{ 2q(0)) (O'y)_f_:dy P(1y)[#(1y)—TIn(2 coshgy)]

B(x.y)+ @[gﬁ"(x,y)wx @' (x.y)?]. (13

B(l 2q(1)+J dx of(x)

1 +
+J dxf dy P(x,y)
0 —o0

Imposing stationarity with respect to variations B¢x,y), The application of the operatél(x,y) generates derivatives
P(1y), #(x,y), ¢(0y), andq(x), one obtains the varia- of the functionm(x,y) with respect tox andy. Mixed de-

tional equations rivatives such asn*)(x,y) can be eliminated in favor of
derivatives ofm(x,y) with respect only to/ by deriving Eq.
_ 2 (15) j times with respect tg.
a0 f dy POy)me(x.y), (14 The first application of this procedure yields
: ax) , o 2
m(x,y) = — ——[m"(x.y) +2pxm(x,y)m’ (x,y)], a(x)=q(x) | dy P(x,y)(m") (21)
(15) _

which for q(x) #0 simply reads

: qx)

P(x,y)=——[P"(x,y) =2B8x[m(x,y)P(x,y)]'],

= | dy P(x,y) m’(x,y)?. 22
(16 Jy(y)(y) (22
with initial conditions(in the absence of a magnetic fiefld  The procedure can be iterated infinitely. For example, the
next three applications lead respectively to
m(1ly)=tanh(y/T), 17

2
P(0y)=48(y). (18 0=— ?Xf dy P(m')3+f dy P(m")?, (23

These equations are the starting point of both the expansion

discussed in this section and the numerical solution. f dy P(m’)3= f P dyl (m")?—
Atime scaler, can be associated with the order parameter y q

g(x) such that for times of order, states with an overlap

equal to or greater tham(x) can be reached by the system.

In this pictureP(x,y) andm(x,y) become, respectively, the

probability distribution of frozen local fieldg and the local

magnetization in a local fielg at the time scale labeled by and

m (mrr)Z

GX) ’4} 24

[1,11.
The derivatives ofj(x) can be obtained by successive (18xq+6x2q)(m’)*
derivation of Eq(14). The procedure is simplified by the use f P dy T2

of the following identity[9]:
(18T + 12xqT — 120m’ x2g%)m’ (m”)?

d _
d—xf dy P(x,y) f(X.y)=f dy P(x,y) Q(x,y)f(x,y) T2
(19) _3®(q2(m/l)2+dm///1—_Zoxqzmr(m//l) .
where + T m
3,42 \5
Q(x, y)— g(—+2,8x m(x, y) ) (20 —wmz(m"")z):o. (25)
y T
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We are interested in the derivatives gfx) at x=0, so we In the limit T—0 we haveTq(0)=0.743+0.002. Note
take the limitx— 0 of the above equations. The limit can be that if we takeq(0)~1/T for T—0 the previous equation
done in a trivial way and, since the functiét(Oy) reduces yhjies that all the derivatives diverge with the temperature
to-gafunctlon[see Eq.(18)], thg equations are_greatly sim- ¢ q™(0)~1/T", in agreement with the Parisi-Toulouse
plified. Moreover, sincen(x,y) is an odd function o for - cajing g(x, T) = q(Bx) [10,18]. Note that we have derived
anyx, clearlym(0,0)=0 for any ever). In this limit EGS. s scaling under the strong hypothesis that it must be valid
(22), (24), and(25) reduce, respectively, to asymptotically forT—0 and8x—0.

This approach also provides an alternative method to
compute the expansion g{x) in powers ofx and 7: starting
5 from q(x) evaluated at a given order ix and 7 we can
Z m'(0,03=q(0)m"(0,02, 277 computem(®)(0,0) through Eq(15) and thenq(x) at the
T next order through the set of Eq®6), (28), (30), (31), and

so on. The set of equations can be solved iteratively. By this

1=m’(0,0), (26)

q(0)m”(0,0)?=0, (28) method we were able to compute the series expansion of
q(x) up to order 20, improving the results of the previous
while Egs.(14) and (23) become trivial identities. section.

From Egs.(26) and(27) we have
IV. RESUMMATION OF THE EXPANSIONS

[ 2
m”(0,00=— \/ ——#0; (29 Unfortunately all the expansions derived in the previous
Tq(0) sections are likely to be asymptotic and to obtain sensible

) estimates of the various quantities of interest some form of
therefore Eq(28) implies thatq(0)=0, as already found in resummation must be done. Here we shall consider the stan-
Ref.[9]. dard Padeapproximant which for a series of degriie- M

To obtain information on the fourth derivative q{x) the  reads[19]
above procedure must be iterated twice more. Since succes-
sive derivatives yield expressions with a rapidly growing
number of terms we only report the result for the lirrit

—0: P (X)= , (34)

18q(0)

2
T where the coefficients are chosen so that the fikst- Vi
+0(0)3m(©5(0,0)=0, (30) +1) terms of the Taylor ex_pgnsion _ﬁ’l’,}‘,,(x) match the_ first
(N+M + 1) terms of the original series. In the following we
. " 3 shall call this the Padapproximant N,M).
w =0, (3 The first problem we face is that, despite the fact that the
T series have alternate signs, they are not Stijlties integral and
) therefore we cannot obtain in a systematic way a sequence of
where Eq(26) and the exact resut{(0)=0 have been used. lower and upper boundgl9]. This difficulty can be over-
Note that Eq(31), with Eq. (29), gives a complete determi- come by noticing that most of the quantities we are inter-
nation of the quartic derivative @f(x) atx=0 as a function ested in, such as, for example, free energy or entropy or

38q(0)2m”(0,0)2 =
T

+ q(3)(0)mm(0,0)2_

q“(0)m”(0,0 -

of the temperaturd and of the first derivative(x=0): q(1), dohave a null derivative at =0. Therefore an indi-
cation of the quality of the approximants can be obtained by
961/2q(0)>2 analyzing the behavior nedr=0. For example, the free en-
q®(0)=- T (32  ergy as a function off is reproduced quite well by many

Padeapproximants, even at very low orders; however, some
of these have a positive derivativeTat 0 while others have
a negative onésee Fig. 1 By inspecting the figure we can
safely assume that approximants with positive derivatives
ive an upper bound, and those with negative derivatives a
wer bound, for the true free ener§20].

As a general fact we obtain the result that the best Pade
approximants at a given order inare those with nearly the

This relation shows that the functiag(x) does not have a
well defined parity[ 14].

Going to higher orders one can show that all the eve
derivatives can be expressed in terms of the odd ones; fq
instance, we have

4©(0)= 34272\5‘1(0)7/2_ 1056,2(0)¥%*)(0) same degree in the numerator and the denominator. We
T5/2 T8/2 ' stress, however, that as usual with asymptotic expansion an
(33 increase of the order in does not necessarily correspond to
an improvement of the precision. With this procedure we
and so on. obtain for the free energy an estimate with at least 16 digits
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FIG. 1. Free energy as a function of 1— T for different Pade
approximants. Top to bottom: (14,16), (13,12), (12,11), (10,11)
and (17,10).

FIG. 3. q(x) as a function ofk for various temperatures. From
‘bottom to top:T=0.95 toT=0.30 in steps of 0.05.

and one forg(x). The procedure, however, is quite difficult
because we do not have a systematic way of choosing the
best approximant and, moreover, coefficients of higher order
are known with less precision in. A better approach is to
construct the functiom(x) directly point by point by com-
puting g(MXna) Wherem=i/n (i=0,1, ... n) for fixed n.
For anym and T the quantityq(mxysy is itself a power
Xma( 0) = 0.548+ 0.005 (35)  series inT which can be summed up using Paalgproxi-
mants. With this procedure the functigfx) can be deter-
(see the inset of Fig.)2and slightly larger than the value 1/2 mined for differentx resolution just by changing the value of
predicted by the Parisi-Toulouse scaling, in agreement with, e.g.,n=50,100,1000, and using the value xgf,, previ-

precision atT=0.9 and eight digits al =0.5, and for the
ground state energy,= —0.763 21 0.000 03, in agreement
with Parisi’s estimaté = —0.7633+0.0001[17]. A similar
analysis can be used to determine the valuexgf, as a
function of temperature; the result is shown in Fig. 2. The
value of the breaking point is finite in the limlt—0,

the approximate nature of this relatipb0,18. ously found(see Fig. 2 In Fig. 3 the functiorg(x) is shown
The analysis of the functiom(x,T) is more complex, for various temperatures.
because not only is the Taylor expansiongdk) in powers This method can be extended to any functio of g; for

of x around any B<x<Xp. likely to be asymptotic for any example, we computed the overlap probability function

fixed temperature, but the expansionsif the coefficients P(may,) in @ wide range of t,emperatuFE>0.3 (see Fig.

of the x expansion is itself nonconvergent. Therefore one4). We found that the best Padgproximant is given by

should use a double Pad&pansion, one for the coefficients (12,7). By using the relatiofil) we can have an independent
estimation ofg(x) with which to test the precision of our

' L B L B results. By using a nornd..(q,q’) = MaXx<1/d(X)—q’ (X)|
i and expansions up to order 20 we find, for example, that
05 d.(9,9')=0(10"%) for T=0.6 andd.(q,q")=0(10"%)
- . for T=0.4.
04 L = The form of the functiorg(x) confirms the prediction of
xf 056 - / i Ref.[10] obtained from interpolation of the 11-RSB solution.
03k Lok {1 In particular, it confirms the approximate scalimgx,T)
| ossf | ~qg(x/T) at low temperaturegsee Fig. 5 Note that the
o2 - s scaling fails whermBx~0O(1), in agreement with the findings
) R of the previous section.
i [ o] Finally, we mention that an alternative resummation tech-
0.11= 0509 092 094 096 0% 1 ] nique based on the Borel transform gives results consistent
y | | | T | T with those obtained with the Padgproximants.
0 1 1 1 1 1

0 02 04 0.6 0.8 1
V. NUMERICAL INTEGRATION OF THE

T »-RSB EQUATIONS

FIG. 2. X;hax @s a function ofr=1—T. Inset: X, @S a function . . )
of 7=1—T with different Padeapproximants. From top to bottom: To check the analytical results of the previous sections we

(7,10), (9,9), (8,12), (6,7), and (7,8). have solved thec-RSB equation$14)—(18) numerically on
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FIG. 4. P(q) as a function ofy for various temperatures. From
left to right: T=0.95 to T=0.30 in steps of 0.05. The data were
obtained with a (12,7) approximant. Note tftg) attains its mini-
mum value for g>0. This happens for any temperature
<0.96198... .

a discrete set of points in the infinite stfip<x<1; —x
<y<o=] and determinedy(x), P(x,y), and m(x,y). The

PHYSICAL REVIEW E65 046137

The core of the numerical scheme is the integration of the
partial differential equation&l5) and(16) along thex direc-
tion which, in contrast to previous numerical studi#2,13,
is done in the Fourier space of tlyevariables, where the
equations take the form

J k2q(x)
5m(x,k)= 5 m(x,k)
— 'GqT(X)ik]-‘JImz](x,k) (36)
and
J k?q(x)
&P(x,k)z— 5 P(x,k)
— BY(X)ikEZTP m](x,k). (37)

For each wave vectdt these are ordinary differential equa-
tions which can be integrated using standard methods. To
avoid the time consuming calculation of the convolutions in
the nonlinear term we use a pseudosped®al code on a
grid mesh ofN, XN, points, which covers the interval
[0.xo] and they interval[ — Ymax:Ymaxl- The truncation of the
wave number may introduce anisotropic effects for lakge

numerical method is based on the iterative procedure of Retherefore to ensure a better isotropy of the numerical treat-

[12]: from an initial guess ofg(x) the fieldsm(x,y) and
P(x,y) and the associated(x) are computed in order as
follows.

(i) Computem(x,y) by integrating Eqs(15) from x=Xx
to x=0 with initial condition (17).

(ii) ComputeP(x,y) by integrating Eqs(16) from x=0
to X=X, with initial condition (18).

(iii) Computeq(x) using Eq.(14).

Herexo<1 (see later. The steps +-2—3 are repeated

ment we perform dealiasing via &h /2 truncation[22]. Fi-
nally, the x integration was performed using a third order
Adam-Bashfort scheme which has the advantage of reducing
the number of fast Fourier call23]. Typical values used are
N,=100-5000,N,=512-4096, anq/m,—=12—-48. The dif-
ference between the values usedXgrandN, follows from

the observation that, if the solution in the direction is
smooth enough, then only a few low wave vectors are ex-
cited. The value of the parametgy,., fixes they range

until a reasonable convergence is reached, typically a meamhere the solution is assumed different from zero, since in

square error om, P, andm of the order ofO(10 ).

T I T T I T
08— -

04— —

02— —

Bx

FIG. 5. q as a function ofgx for different values ofT. Top to
bottom: T=0.30, T=0.35, T=0.40, T=0.45, andT=0.50.

the numerical algorithm it is implicitly assumed that
PX,y)=m(x,y)=0, [Y[>Ymax- (38)

This explains the rather large value used. The number of
iterations necessary to reach a mean square errqy ®rand

m of orderO(10 ®) depends on the initial guess @fx) but

it is typically a few hundred.

In Fig. 6 are shown the order parametgx) and the
overlap probability distribution functiorP(q) at T=0.6
computed for increasingresolution andy=1. As expected
the agreement between the numerical and the perturbative
solutions increases with the numbi, of x grid points.
However, the convergence is not uniform: it is rather fast far
from X2« @and much slower for=x,,.«[see the inset of Fig.
6(a)]. This is not unexpected because k&f X, the deriva-
tive of the order parameter*)(x) has a cusp:

lim q®x)>0, lim q®(x)=0, (39

X—X X—X

max max

making convergence more difficult. We recall that in deriv-
ing Eqgs.(15) and(16) differentiability of g(x) was assumed.
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4@ — T T T T T T T P@) T
F @ _ L
05— p = 2.5

04 —

03— - 15 —

2 (3} .
x)
02 4

0.1 | L — (1 o —

04 L L e
0.35 04 045 0.5 L
ol 1 111 ol 1+ 1 111
0 0.2 04 0.6 0.8 1 0 0.1 02 03 04 05 06 ]
X q

FIG. 6. q(x) as a function ok (a) andP(q) as a function of
(b) at T=0.6 for [(a) bottom to top;(b) left to right] N,=50, N,
=500, N,=1000, and\,=5000. In all caseg,=1, Y,»,=48, and
N,=4096. The dashed line is the result from the perturbative solu-
tion discussed in the previous sections. Insetanenlargement of
the region neaxay-

. . FIG. 8. Second derivative af(x) for T=0.4 for differentx,
The use of lower order integration schemes, such as secorég]dN =500, y,.,=48, andN, = 4096
order Adam-Bashfort or Euler schemes, does not give mea- s omax T y '
surable improvements. L L . . .
Larger values ofN, require more computer memory; Which is satisfied by our numerical solution for all studied
therefore to increase the precision we adopted a differeriemperatures with at least four digits. For example, Tor

approach. Sincé|(x)=0 for x>x. EGs.(15) and (16) are =0.8 we get 0.79999@), while for T=0.5 the value is

trivial in this range and we can reduce the upper bound of thQ'499 993). . .
X integration fromx=1 to X=Xg=Xmax- ThiS Obviously re- Note that by fine tuning, not only can we have a good

quires a knowledge of,,,, for the given temperature. How- solution forq(x) aj[ the given temperature, .bUt we also haye
ever, if we assume na priori knowledge ofx,,., we must the valueof x,. This is best seen by analyzing the concavity
proceed with successive approximations: we start fogm of q(x) nearx,. In Fig. 8 we show the seconc_l derivative of
=1 and then reduce it until we “hit” the value of .. This ~ d(X) nearxo for T=0.4 andN, =500, from which one may
procedure is simplified by the fact thatif<X,,.x the shape conclude that 0'505Xmax<0'510'. . .

of q(x) nearx, changes dramatically, with the concavity A careful analysis of the stability of this result as a func-

: ; - tion of N, (see Fig. 9, reveals, however, that the correct
passing from negative values fRg> X, t0 positive values LX) ' . k
fOr Xg<Xoay. In Fig. 7 are shoqu(qu?)é) andP(q) (b) at  estimation is 0.51€ X;,,5,<0.515, in rather good agreement

T=0.6 for different values okg,; the improvement is rather with the analytical resulkya,=0.5111+0.0002. The same

evident. As an additional check we have considered thémaIySiS forT:O_.6 Ieads_ FO 0.438 Xngx<0.440.
We are now in a position to check the results of the pre-

equalit . . L
d y vious section about the derivative of the order parameter at
1 x=0, and in particular the conclusion
1- | dxqx)=T, (40
0
a®® ' T a”x)
9 T ' g [ T T T T

= s 7 r -
x,=0510 R X,= 0515

25

0.52

L L L ) ) L L L L
04 042 044 046 0 01 02 03 04 05 06 x x

X q

FIG. 9. Second derivative af(x) for T=0.4 for differentN,
FIG. 7. (&) q(x) for T=0.6 nearx, for differentx,. (b) P(q) and x=0.510, Y—=48, andN,=4096. Left panelx,=0.510;
for T=0.6 for differentxy. In all casesN,=500, y,,.,,=48, and  increasingN, leads to a positive value af®(x,) implying X,
N,=4096. The dashed line is the result from the perturbative solu=0.510<Xma. Right panel:x,=0.515; increasing\, leads to a
tion discussed in the previous sections. more negative value a®(x,) implying xo=0.515> Xpay.
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ol T T T T T %

—— Padé .

FIG. 10. Left panel: second derivative gfx) at T=0.6 and
different N,. Right panel: third derivative ofj(x) at T=0.6 and
different N,. In both casexy=1, Yna=48, andN,=4096. The
full line is the perturbative result.

lim g®(x)>0.
x—0

(41)

In Fig. 10 we show the second and third derivatives|©f)
obtained from numerical differentiation gf(x). The agree-

PHYSICAL REVIEW E65 046137

to be compared with 0.7180.004 of the analytic expan-
sions.

In the limit T— 0 the quantity +q(1) must also vanish
asT? [11]. The behavior ofj(1) as a function off is shown
in the right panel of Fig. 11. Using these data we obtain

1-q(1
lim _qz( ):1.60, (44)
T—0 T
in very good agreement with the value 1#60.01 obtained
with the expansions of the previous sections.

VI. CONCLUSIONS

In this paper we have studied the properties of the
o-replica symmetry breaking solution of the Sherrington-
Kirkpatrick model without external fields. Using high order
expansions inr=T.—T we are able to compute the order
parameteq(x) and other relevant quantities for a large range
of temperatures with high precision. In particular, we found
thatq(x) is notan odd function o, confirming the predic-
tion of Ref.[14]. A direct consequence of this is that the

ment with the perturbative result is sufficiently good; more-overlap probability distribution functiorP(q) has discon-
over, from the right panel of Fig. 10 we clearly see that thetinuous derivatives atj=0. Another consequence of our

prediction(41) is verified.

findings is that the Parisi-Toulouse scaling becomes exact

We conclude this section with a short discussion of theasymptotically forT—0 and 8x—0, while for T—0 it is a
entropy which, using the stationarity of the free energy funcfairly good approximation. This is also consistent with the

tional (13), can be written as

2
=Lty

+ J:dy P(1y)[In2 coshBy—ytanh By)]. (42)

T=0 limit of the breaking point which we found to be
Xmad{0)=0.548+ 0.005.

Having reached very high orders we can reasonably
speculate on the analytical properties of the functjox). In
particular, we believe that all the expansions in powers of
are asymptotic expansions; and at any temperature, the func-
tion q(x) is infinitely differentiable but not analytical for any
X; in particular, the Taylor expansion of the functigx)

For other equivalent forms see, e.g., H&f. The entropy as around any 8<X<Xmay does not converge but is asymptotic.

a function of temperature is shown in the left panel of Fig.

This singular behavior is not connected either with the

11. The entropy must vanish quadra’[ica"y with the tempera[eplica limit or with the Parisi ansatz; it aCtua”y Originates

ture asT—0 [11]. From our numerical data we find

_s(T)
I|m—2=a:0.72 (43
T—0 T
s L T T ab T T T T
| 190 —
AT
041 Dl .,
s | osf ., —
i 3 “w
03| K _ o
. 06| _
’ i %
s I
02l - [Y
..,9 041 . -
» 1 i v.».
0.1 ;..4' =4 o2k .a,.. .
o’ .
0lge-a® ! ! 1 0 ! 1 1 L
0 02 04 06 08 1 0 02 04 06 08 1
T T

FIG. 11. Left panel: entropg as a function of temperaturg
Right panel:q(1) as a function of temperatufie

from the singularities in the complex plain of the initial con-
dition of the Parisi equationf(1,y)=In2coshgy. This is
clearly seen for the replica symmetric solution

Az Iq
gq= \/?e tanl’?(ﬁ qZ)
— o T

In this case it is easy to prove that the expansion of (1
—T?) in powers ofp= B2 is asymptotic because it corre-
sponds to substituting tafhin the integrand with its Taylor
expansion, which is not convergent on the whole real axes.
Then one can prove that the expansiorgah powers ofr
=1-T is asymptotic, recalling that standard manipulation
(e.g., multiplication, division, inversion, ejc.on an
asymptotic expansion in a power series does not change its
character. A detailed treatment of the RSB solution is much
more complex, but the origin of the asymptotic character is
likely to be the same. Indeed, an expansion in smdknd
therefore in smallj) corresponds to an expansion in small

of all the quantities likef (x,y) andm(x,y); the appearance
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of integrals of the form [Pfdy where P(x,y) ported by analysis of the series expansions. .

~ exp(=y?/X) generates asymptotic expansions since the Ih€ analytical results have been compared with numerical
Taylor expansions of (x,y) andm(x,y) in powers ofy do solutions of thex-replica symmetry breaking equations. We
not converge on the whole real axes. These arguments can ggve developed a numerical approach based on a pseu-

very useful in practice to guess the position of the singulari- ospectral code which leads to strong enhancement of the

ties of the Borel transform if one wants to sum the expan-quality of the numerical results. We have also shown how,

) . X . for example, to determine the value xf, numerically. In
sions through a conformal mapplﬁ’g‘ﬂ]. For Instance, in the all cases the agreement between the numerical and the ana-
expression of the free energy integrals of the following form

appear:

J +w\/d—i e~ 7" In coshz). (45)

- 27T

The singularities of the Borel transform of the previous inte-
gral are located on a cut running frome to — 72/8 and a
possible guess is that this is also the singularity structure o

Iytical results is rather good.

We conclude by stressing that our results go beyond the
interest in the Sherrington-Kirkpatrick model, since the
method we used here is far more general and can be em-
ployed in a wider class of models with generalizedeplica
symmetry breaking equations, such as those introduced in
Ref.[3]. In particular, in this reference the numerical method
was applied to an optimization problef®SAT) model, and
tpe extension to other relevant models is under development.

the Borel transform of the free energy. This guess is sup- A.C. acknowledges support from the INFM-SMC.
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